facebook

linkedin

User Modeling and User-Adapted Interaction (UMUAI) provides an interdisciplinary forum for the dissemination of new research results on interactive computer systems that can be adapted or adapt themselves to their current users, and on the role of user models in the adaptation process.

UMUAI has been published since 1991 by Kluwer Academic Publishers (now merged with Springer Verlag).

UMUAI homepage with description of the scope of the journal and instructions for authors.

Springer UMUAI page with online access to the papers.

Latest Results for User Modeling and User-Adapted Interaction

The latest content available from Springer
  • Session-based item recommendation in e-commerce: on short-term intents, reminders, trends and discounts

    Abstract

    Many e-commerce sites present additional item recommendations to their visitors while they navigate the site, and ample evidence exists that such recommendations are valuable for both customers and providers. Academic research often focuses on the capability of recommender systems to help users discover items they presumably do not know yet and which match their long-term preference profiles. In reality, however, recommendations can be helpful for customers also for other reasons, for example, when they remind them of items they were recently interested in or when they point site visitors to items that are currently discounted. In this work, we first adopt a systematic statistical approach to analyze what makes recommendations effective in practice and then propose ways of operationalizing these insights into novel recommendation algorithms. Our data analysis is based on log data of a large e-commerce site. It shows that various factors should be considered in parallel when selecting items for recommendation, including their match with the customer’s shopping interests in the previous sessions, the general popularity of the items in the last few days, as well as information about discounts. Based on these analyses we propose a novel algorithm that combines a neighborhood-based scheme with a deep neural network to predict the relevance of items for a given shopping session.

  • Adaptive user modelling in car racing games using behavioural and physiological data

    Abstract

    Personalised content adaptation has great potential to increase user engagement in video games. Procedural generation of user-tailored content increases the self-motivation of players as they immerse themselves in the virtual world. An adaptive user model is needed to capture the skills of the player and enable automatic game content altering algorithms to fit the individual user. We propose an adaptive user modelling approach using a combination of unobtrusive physiological data to identify strengths and weaknesses in user performance in car racing games. Our system creates user-tailored tracks to improve driving habits and user experience, and to keep engagement at high levels. The user modelling approach adopts concepts from the Trace Theory framework; it uses machine learning to extract features from the user’s physiological data and game-related actions, and cluster them into low level primitives. These primitives are transformed and evaluated into higher level abstractions such as experience, exploration and attention. These abstractions are subsequently used to provide track alteration decisions for the player. Collection of data and feedback from 52 users allowed us to associate key model variables and outcomes to user responses, and to verify that the model provides statistically significant decisions personalised to the individual player. Tailored game content variations between users in our experiments, as well as the correlations with user satisfaction demonstrate that our algorithm is able to automatically incorporate user feedback in subsequent procedural content generation.

  • MobiGuide: a personalized and patient-centric decision-support system and its evaluation in the atrial fibrillation and gestational diabetes domains

    Abstract

    MobiGuide is a ubiquitous, distributed and personalized evidence-based decision-support system (DSS) used by patients and their care providers. Its central DSS applies computer-interpretable clinical guidelines (CIGs) to provide real-time patient-specific and personalized recommendations by matching CIG knowledge with a highly-adaptive patient model, the parameters of which are stored in a personal health record (PHR). The PHR integrates data from hospital medical records, mobile biosensors, data entered by patients, and recommendations and abstractions output by the DSS. CIGs are customized to consider the patients’ psycho-social context and their preferences; shared decision making is supported via decision trees instantiated with patient utilities. The central DSS “projects” personalized CIG-knowledge to a mobile DSS operating on the patients’ smart phones that applies that knowledge locally. In this paper we explain the knowledge elicitation and specification methodologies that we have developed for making CIGs patient-centered and enabling their personalization. We then demonstrate feasibility, in two very different clinical domains, and two different geographic sites, as part of a multi-national feasibility study, of the full architecture that we have designed and implemented. We analyze usage patterns and opinions collected via questionnaires of the 10 atrial fibrillation (AF) and 20 gestational diabetes mellitus (GDM) patients and their care providers. The analysis is guided by three hypotheses concerning the effect of the personal patient model on patients and clinicians’ behavior and on patients’ satisfaction. The results demonstrate the sustainable usage of the system by patients and their care providers and patients’ satisfaction, which stems mostly from their increased sense of safety. The system has affected the behavior of clinicians, which have inspected the patients’ models between scheduled visits, resulting in change of diagnosis for two of the ten AF patients and anticipated change in therapy for eleven of the twenty GDM patients.

  • A therapy-driven gamification framework for hand rehabilitation

    Abstract

    Rehabilitative therapy is usually very expensive and confined to specialized rehabilitation centers or hospitals, leading to slower recovery times for corresponding patients. Therefore, there is a high demand for the development of technology-based personalized solutions to guide and encourage patients towards performing online rehabilitation program that can help them live independently at home. This paper introduces an innovative e-health framework that develops adaptive serious games for people with hand disabilities. The aim of this work is to provide a patient-adaptive environment for the gamification of hand therapies in order to facilitate and encourage rehabilitation issues. Theoretical foundations (i.e., therapy and patient models) and algorithms to match therapy-based hand gestures to navigational movements in 3D space within the serious game environment have been developed. A novel game generation module is introduced, which translates those movements into a 3D therapy-driven route on a real-world map and with different levels of difficulty based on the patient profile and capabilities. In order to enrich the user navigation experience, a 3D spatio-temporal validation region is also generated, which tracks and adjusts the patient movements throughout the session. The gaming environment also creates and adds semantics to different types of attractive and repellent objects in space depending on the difficulty level of the game. Relevant benchmarks to assess the patient interaction with the environment along with a usability and performance testing of our framework are introduced to ensure quantitative as well as qualitative improvements. Trial tests in one disability center were conducted with a total number of five subjects, having hand motor controls problems, who used our gamified physiotherapy solution to help us in measuring the usability and users’ satisfaction levels. The obtained results and feedback from therapists and patients are very encouraging.

  • Bayesian knowledge tracing, logistic models, and beyond: an overview of learner modeling techniques

    Abstract

    Learner modeling is a basis of personalized, adaptive learning. The research literature provides a wide range of modeling approaches, but it does not provide guidance for choosing a model suitable for a particular situation. We provide a systematic and up-to-date overview of current approaches to tracing learners’ knowledge and skill across interaction with multiple items, focusing in particular on the widely used Bayesian knowledge tracing and logistic models. We discuss factors that influence the choice of a model and highlight the importance of the learner modeling context: models are used for different purposes and deal with different types of learning processes. We also consider methodological issues in the evaluation of learner models and their relation to the modeling context. Overall, the overview provides basic guidelines for both researchers and practitioners and identifies areas that require further clarification in future research.